Cube:

The **definition** of a cube is a threedimensional square with six equal sides. An example of a cube is a

An example of a cube is a piece of ice.

Cuboid: In a **cuboid**, each face is a rectangle and the corners or the vertices are 90-degree angles. Also, the opposite faces are always equal. For example, a book is a **cuboid**. It has 6 surfaces of which each opposite pair is of the same dimensions.

- discour

Cube and cuboid are threedimensional shapes which consist of six faces, eight vertices and twelve edges. The primary difference between them is a cube has all its sides equal whereas the length, width and height of a **cuboid** are different. ... The area and volume of **cube**, **cuboid** and also cylinder differ with each other.

The key difference between cube and cuboid is: a cube has six squareshaped faces of the same size but a cuboid has rectangular faces.

Volume is the measure of the amount of space inside of a solid figure. It's units are always "cubic", that is, the number of little element cubes that fit inside the figure.

To find the volume of a cube or cuboid we multiply the length, weight and height.

Volume = L x W x H

Volume of a Cube

In a cube, all of the sides are the same length.

We can use this formula to work out the volume of a cube.

Volume = length x length x length

Example 6

Find the volume of a cube with sides of length 10 mm.

Volume = length x length x length

= 10 x 10 x 10

Volume = 1 000 mm³

Surface area

Cube

(Here all the faces are square)

Surface area = Area of all six faces = 6a²

cuboid

The property of the second sec

Surface area = Area of all six faces = 2(lxb + bxh +hxl)

Formula for the surface area of a cuboid

We can find the formula for the surface area of a cuboid as follows.

Surface area of a cuboid =

 $2 \times lw$ Top and bottom

+ 2 × hw Front and back

+ 2 × *lh* Left and right side

$$= 2lw + 2hw + 2lh$$

A prism takes its name from the shape of its base, e.g. square prism, triangular prism, hexagonal prism.

Triangular Prism

Formula

Rectangular Prism:

Volume V = Iwh

Surface area A = 2(lw + lh + wh)

→ length

→ width

---- height

Rectangular Prism

<u>Triangular Prism</u>:

Volume V = bhl

Surface area A = 2B + Ph

b → base

h → height

—→ length

Perimeter of base

Area of base

Triangular Prism

Definition of Cylinder

A **cylinder** is a three-dimensional solid that holds two parallel bases joined by a curved surface, at a fixed distance. These bases are normally circular in shape and the center of the two bases are joined by a line segment, which is called as the axis.

 $Volume = Tr \times r^2 \times h$

r = radius

h = height

Cylinder

<u>Surface</u> Area

We will need to calculate the surface area of the top, base and sides.

Area of the top is πr^2 Area of the bottom is πr^2 Area of the side is $2\pi rh$

Volume $V = \pi r^2 h$

Shape	Surface Area Formula	Volume Formula
Cube	$\frac{SA = 6s^2}{\text{where } s = \text{length of the side}}$	$V = s^3$ where $s = \text{length of the side}$
Cuboid	SA = 2(lw + lh + wh) where $l = length$, $w = width$, $h = height$	V = lwh where $l = length$, $w = width$, $h = height$
Prism	SA = 2B + ph where B = area of base, p = perimeter of base, h = height	V = Bh where $B = $ area of base, $h = $ height
Cylinder	$SA = 2\pi r^2 + 2\pi rh$ where $r = \text{radius}$, $h = \text{height}$	$V = \pi r^2 h$ where $r = \text{radius}$, $h = \text{height}$

A composite solid is a solid that is composed, or made up of, two or more solids.