Introduction to Sets

Defining a Set

- A set is a collection of objects that are clearly identified.
- The objects in the set are called the members or elements of the set.
- Each member is said to belong to the set.
- Sets are denoted by capital letters :

 The elements of a set are represented by lower case letters:

Sets

$$A = \{246810\}$$

These are two sets : A and B.

- The set A has even numbers.
- 2. The set B has prime numbers.
- 3. Elements of set A are: 2, 4, 6, 8, 10
 - 4. Elements of the set B are: 2, 3, 5, 7.

SETS

Sets are denoted by

Capital letters

Sets use "curly" brackets

$$A = \{1, 3, 2, 5\}$$

$$n(A) = |A| = 4$$

The number of elements in Set A is 4

3∈ A

 $7 \notin A \longleftarrow 7$ is not an element of A

3 is an element of A

Definition

Each object in a set is called an element or a member of the set.

Sets notation: A, B, C, ...

Elements Notation: a, b, c, ...

For example, $A = \{a, b, c, d\}$

 $b \in A$

'b is an element of set A' or 'b is in A'

f ∉ A

'f is not an element of set A' or 'f is not in A'

Famous Sets in Math

- N = Set of natural numbers
- Z = Set of integers.
- **Z+** = Set of positive integers.
- Q = {p/q | p ∈ Z, q ∈ Z, and q≠0}, set of rational numbers.
- Q+ =The set of positive rational number.
- R = The set of real numbers.
- R+ =The set of positive real numbers.
- C =The set of complex numbers

Operations on Sets

- The **union** of set A and B, denoted by $A \cup B$ is the set that contains all elements in either set A or set B, i.e. $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$.
- The intersection of set A and B, denoted by A ∩ B contain all elements that are common to both sets i.e. A ∩ B = {x | x ∈ A and x ∈ B}

• If A = $\{1,3,5,7,9\}$ and B = $\{3,7,9,10,15\}$; A \cup B = $\{1,3,5,7,9,10,15\}$ and A \cap B = $\{3,7,9\}$.

Overlapping Set

- Two sets that have at least one common element are called overlapping sets.
- · In case of overlapping sets:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

 $n(A \cup B) = n(A - B) + n(B - A) + n(A \cap B)$
 $n(A) = n(A - B) + n(A \cap B)$
 $n(B) = n(B - A) + n(A \cap B)$

Example: Let, $A = \{1, 2, 6\}$ and $B = \{6, 12, 42\}$. There is a common element '6', hence these sets are overlapping sets.

Introduction to Sets

Disjoint Sets

- Disjoint sets:
- Two sets are called disjoint if they have no elements in common.

- For Example:
- The sets S = {2, 4, 6, 8} and T = {1, 3, 5, 7} are disjoint.

The Universal Set Definition

The Universal set is the set of all elements under consideration in a given discussion.

Denotation: U

For instance, $U = \{a, b, c, d, e, f, g, h, I, j\}$

U

$$A = \{a, b, c\}$$

$$B = \{c, d, e\}$$

$$C = \{f, g, h\}$$

Empty sets

 A set which does not contain any elements is called as Empty set or Null or Void set.
 Denoted by Ø or {}

e.g. Set A= {set of months containing 32 days}

Here n(A)=0; hence A is an empty set.

e.g. set H={no of cars with three wheels}

Here n (H)= 0; hence it is an empty set.

The Complement of a Set

The **complement** of a set A is defined as the set of elements that are contained in U, the universal set, but not contained in set A. The symbolism and notation for the complement of set A are

$$A' = \{ x \in U \mid x \notin A \}$$

In the Venn diagram on the left, the rectangle represents the universe. A' is the shaded area outside the set A.

EXAMPLE 1 Finding the Complement of a Set

Let $U = \{v, w, x, y, z\}$ and $A = \{w, y, z\}$. Find A' and draw a Venn diagram that illustrates these sets.

SOLUTION

Using the list of elements in *U*, we just have to cross out the ones that are also in *A*. The elements left over are in *A*′.

$$U = \{v, y(x, x, x), z'\}$$
$$A' = \{v, x\}$$

Set Theory Symbols

Symbol	Name	Example	Explanation
{}	Set	A = {1,3}	Collection of objects
		B = {2,3,9}	
		C = {3,9}	
Λ	Intersect	$A \cap B = \{3\}$	Belong to both set A and set B
U	Union	$A \cup B = \{1, 2, 3, 9\}$	Belong to set A or set B
С	Proper Subset	{1} ⊂ A	A set that is contained in
		$C \subset B$	another set
⊆	Subset	{1}⊆ A	A set that is contained in or
		{1,3} ⊆ <i>A</i>	equal to another set
C	Not a Proper Subset	{1.3} ⊄ A	A set that is not contained in
			another set
	Superset	$B\supset C$	Set B includes set C
E	Is a member	3 ∈ <i>A</i>	3 is an element in set A
∉	Is not a member	4 ∉ <i>A</i>	4 is not an element in set A